> COACHING CORNER

CROSSWIND CALCULATIONS MADE EASY

Mental arithmetic goes out of the window for most pilots when flying. Here's a really simple way
WORDS Dave Sawdon PHOTOS www.airteamimages.com

∇IPRESUME you are reading this in a comfortable arrchair, or on
a train, or maybe even in a flying a train, or maybe even in a flying school with the rain pounding on the windows. Possibly there's a favourite in the air. Under these conditions, if I asked you to do some mental arithmetic (and you were aged over 25), it would probably take you less thirds of $25^{\prime \prime}$. Now imagin
at the holding the situation when you are "ready for departure" and the tower replies with "cleared take-offf, wind 280,25 knots"" What's the crosswind component? What's the headwind component if the performance is a bit tight? Is it the same as you used in your
performance calculations? Not as easy as performance calculaionsit
you were on the train, is it?
Maybe you are at the end of ang flight Maybe you are at the end of a long flight,
typicallyslightly longer than the comfortab typically sightly longer than the comfortable
endurance of your bladder. You are flying an approa your anatomy would prefer when at feet, you call "final" for runway 35 and the tower replies "cleared to land; wind o30, 25 knots". What is the crosswind component? Would you
agree that it would not be as easy now as in your armchair?
Let's be honest with each other. Do you actually calculate the crosswind component
every time you are told the wind strength and every time you are told the wind strength and
direction after a call of "ready for departure" or "final"? Do you always think about the wind direction and make an appropriate aileron input? Honestly?
damineritt ime as an instructor and examiner it has been very rare that a pilot
has volunteered components If I ask them, the answer is usually (with some honourable exceptions) "errr" followed by a honourable exceptions) "errr' followed bya
semi-random number. Frequently they don't semi-random number. Frequently they do
even know whether the wind will be from
the eftor the right without the left or the right without looking at the It's an unf It's an unfortunate aspect of aviation that
we all lose a significant proportion of our intellectual capacity when we have an aircraft strapped to our back. I cannot tell you why
it happens but I can show you a way around it happens but I can show you a way around
the problem when it comes to crosswinds and headwinds. The purpose of this article is

ABOUT THE AUTHOR

Sawdon has	Sarum but he trav	1971, an SEPL in 1984,
recently joined the	around and can be	PL in 199
Pilot Coaching Scheme	found examining	a helicopter in 2001.
a Full Coach. He is	or instructing at	has held a CAA
reelance Instructor	Bournemouth,	d an Instru
and Examiner for al	Popham, or	Rating since 1997 and
aspects, including:	other strips and	has flown about 70
aerobatics, IMC, multi-	airfelds within	different types.
engine, tailwheel and	striking distance	As his "day job"
night training. Most	Winchester.	Dave works for a
weekends he can be	His first solos	"very large blue IT
found working at Old	include a glider	company

o present a simple method which will allow
you to assess the crosswind and headwind you to assess the crosswind and headwind
components with as much accuracy as you components with as much accuracy as you
like, without any sums, without any gadgets, nless than five seconds, and whilst flying an aeroplane.

ASIC GEOMETRY

eut will start by going back to basic geometry of us remember about sines and cosines from our schooldays. Figure 1 shows an aircraft ur schooldays. Figure 1 shows an aircrat
lined-up on runway 36 and a wind arrow from approximately 30°. We can see from the

drawing that the crosswind component is the
wind speed multiplied by the sine of the angle wind speed multipied by the sine of the angle
between the nose of the aircraft and the wind direction (called the relative wind angle). We can also see how the headwind component could be calculated, either as the wind speed angle, or as the wind speed multiplied by the sine of the angle between the beam of the aircraft and the wind direction.
Obviously too compley for Obviously too complex for our requirements sixths", or the "clock face" rule for crosswind assessment and nothing at all (except the

TABLE 1: RULE OF SIXTHS			
$\begin{aligned} & \text { RELATIVE } \\ & \text { WNND } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { RULE } \\ \text { SIXTHS } \end{gathered}\right.$	SINE OF WIND ANGL	ERROR
10°	1/6	0.17	1\%
20°	2/6	0.34	1\%
30°	3/6	0.50	0\%
40°	4/6	0.64	-2\%
50°	5/6	0.77	-7\%
60°	6/6	0.87	13\%
70°	6/6	0.94	6\%
80°	6/6	0.98	2\%
90°	$6 / 6$	1.00	0\%

whizzwheell for the head or tail wind.
The "rule of sixths" makes use of the The "rule of sixths" makes use of the happy
coincidence that the sine of to degrees is very close to $1 / 6$ th, sine 20 degrees is very close to 2/6ths and so on. Table 1 shows the full story. This method is a fairly accurate approximation for most relative wind angles but we can see
hat there is a significant error at 60 degrees. Because of this some pilots modify the rule for 6 degrees and use o..9 rather than $6 / / 6$ ths, in order to get the error down from 13% to 3%.
To use this "rule" you first determine the To use this "rule" you first determine the eported wind strength by the appropriate raction. So, if the reported wind is $350 / 25$ and * the ure using rangle is is 40 d
${ }^{*} 40$ degrees gives $4 / 6$ ths
${ }^{*}$ * the crosswind component is therefore $4 / 6$ ths of 25 kt say $1 \mathrm{klt-ish}$.
If a second table were produced, with the wind angle column turned upside down, he heade methot wod could be used to calculate people use it in practice?
All we have to do, at 500 feet on a bumpy day, having drunk too much coffee three hours ago, with someone in the back asking why something-or-other is happening and with
ATC talking on the radio is work out thin ATC takikng on the radio, is work out the wind angle and then multiply the wind speed by
the appropriate fraction! The honest truth is hat the sums are too complicated for most people to perform whilst flying an aeroplane
t's therefore no surprise that most pilots It's therefore no surprise that most pilots
don't bother to calculate the components an occasionally get an unpleasant surprise.
‘We lose a significant proportion of our intellectual capacity when we have an aeroplane strapped to our back'

FIGURE 2

What we need is a simple technique
for accurately estimating the crosswind component; a technique which requires virtually NO brain power for those days when he remaining brain cell has had enough. Something visual and easy that doesn't require
sums or a gadget And here it is. sums or a gadget. And here it is.

DIRECTION INDICATOR

In virtually every aircraft there is a Direction
Indicator (DI) that looks vaguely like the one Indicator (DII) that looks vaguely like the one
shown in Figure $\mathbf{2}$ and we can use this as a form of analogue computer (those of you who have an older style ribbon DI need not despair, I'll discuss how you can use the same At first, reading this m but believe me, with practice it is very easy. You are going to mentally draw the vector triangle on the face of the DI. The distance from
the centre of the DI to the edge represents the reported wind speed. Once you are lined up on
final approach, simply find the reported wind final approach, simply find the reported wind direction on the outside of the DI scale and
mentally drop a vertical line down on to the mentally drop a vertical line down on to the
horizontal centre line. The proportion of the horizontal centre line. The proportion of the
centre line that lies between the vertical line and the centre line is the proportion of the wind speed that is at right angles to your direction; in
other words, the crosswind. ther words, the crosswind.
Let's look at that more slowly
Look at Figure 3. You are either lined-up for take-off, or on final approach, for runway 35
and the wind is reported as o40/25. Imagine the DI being a picture of the horizontal situation, drawn with a radius that represents the wind
strength in some scale or other. In other words,
if the wind is 25 knots the radius of the DI represents 25 knots.
Step 1: Find the reported wind direction on the outside of the DI (shown as a large blue arrow). You now have the first piece of information; the wind is from the right.
Step 2: Mentally drop a vertical line down from the wind direction on the outside of the DI to the horizontal centreline.
Step 3: The horizontal centre line represents the crosswind axis so visually scale-off the crosswind component as a proportion of the length of the crosswind axis, i.e. the wind speed. In Figure 3 it looks like the crosswind component is just less than 80% of the total length, say just less 20 knots. Mathematically, the answer is 19 kt . With a little bit of practice this is fast, and as accurate as you choose to make it. It also inherently wakes you up to whether the wind is from your left or your right - it's written on the face of the DI.

HEAD OR TAIL WIND COMPONENT

Once you are comfortable with the technique it can be used to estimate the head or tail wind component in addition to the crosswind.
Look at Figure 4. You are lined up for departure, or on final approach, or simply want to know the wind components on heading 135.
The wind is reported as $180 / 30$. What are the headwind and crosswind components? You already know how to assess the crosswind component and can estimate that it's close to 20 knots. We can use the same technique to assess the headwind component. Just project a horizontal line from the wind direction on the outside of the DI to the vertical centre line (which represents the head or tailwind axis) and visually scale-off the headwind component as a proportion of the length of the headwind axis, i.e. the wind speed. In Figure 4 it looks like the headwind component is about 22 knots (mathematically the answer is 21 knots).
What could be easier?
But what, you might say, if you aren't linedup with the runway and want to know the crosswind and head/tailwind components? Maybe you are at the holding point, at dispersal or approaching the airfield. There are two solutions; one is simply to rotate the DI so that the runway heading is at the top, but a better answer is to use the ADF or VOR indicators in exactly the same way as described for the DI. This is also the answer for those with a ribbon DI: use one of the other compass roses.
Possibly you're flying a very basic aircraft with no compass rose type instruments at all? If you stick or draw a compass rose on your kneeboard you can still use the method. In fact, with a compass rose of any type you are now able to accurately estimate wind components without doing sums. Isn't that a relief?

PRACTICE IN THE BATH

Use the compass rose in Figure 2 to practice on while you're in the bath. Turn the DI to represent a turbulent approach into a shortish airstrip with a runway orientation of 345°. The wind is 030/25.
Estimate the crosswind component. Is it inside the demonstrated crosswind capability of your aircraft? Will the headwind component have been reduced sufficiently to give you concerns over the landing distance available? Mind the bubbles!

Even airliners have to consider the crosswind and be able to correct the crab angle for landing.

